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A method is given for calculating the macroscopic coefficients of
thermal conductivity and diffusion for microinhomogeneous solids
whose local coefficients of thermal conductivity (or diffusion) form an
ergodic homogeneous stray field. In the case of marked isotropy of
the field of the local coefficients, the calculations are taken to a
conclusion, The final formulas for the structure are not much more
complicated than the corresponding first-approximation formulas.

The results of calculations for certain other cases are also given, The
effect of anisotropy of the crystallites in polycrystalline material on
the coefficients of thermal conductivity and diffusion is discussed.

One of the main problems in the mechanics of microinhomogeneous
bodies is the determination of the macroscopic constants from the
corresponding microscopic characteristics. The assumption regarding
the small inhomogeneity used by a number of authors [1, 2] is not
applicable in the case of isotropic polycrystalline aggregates consist-
ing of substantially anisotropic crystallites, stochastic reinforced media
media, etc. The so-called self-consistent field method {3] opens up
some interesting prospects, but this method is an approximate one and
its errors have not yet been assessed. Nevertheless, by making certain
fairly general assumptions about the correlation properties of the in-
homogeneity, it is possible to obtain final accurate formulas for such
macroscopic properties of the solids as the coefficients of thermal
conductivity, diffusion, elasticity, and thermal expansion. Below we
consider some of the simplest problems involved in determining the
macroscopic constants which form a second-order tensor and which
characterize the distribution of a certain scalar quantity in a micro-
inhomogeneous body.

1. Let the scalar quantity ¢ (r), where r = (x, X3,
X3), satisfy

(1.1)
(here and subsequently agreement about summation
with respect to "dummy" indices is used.) A certain
symmetrical positively defined second-order tensor

is determined by the coefficients Ajk at each point in
the field. Equation (1.1) can represent the stationary
temperature distribution in a solid, the stationary
concentration distribution, etc. Correspondingly the
tensor field Ajk (r) will represent the distribution of
the local coefficients of thermal conductivity, diffu-
sion, etc. In order to be specific, we will treat Eq.
(1.1) as the equation of heat conduction in a solid under
stationary conditions.

We consider Eq. (1.1) under the assumption that
the body has an inhomogeneous microstructure and
hence that the thermal-conductivity coefficients Ajk (r)
form a stray field. The dimensions of the body are
such that, in comparison with the scales of the in-
homogeneity and the correlation, it can be regarded as
limitless. The field Ajk(r) is assumed homogeneous
and ergodic. We consider a medium consisting of
crystallites of one kind. Let s be the thermal-con-
ductivity tensor for a crystallite referred to the crys-
tallographic axes. This tensor is assumed to be deter-

minate and equal at all points in the field. Transfering
to the laboratory coordinate system, we obtain

Mje = CjaCupllas, (1.2)

where c;, is the transform matrix of the coordinates.
We now write >\jk and Mk as
Mjge = D" A= Mgy, Wik = B -+ B’ (1.3)
where A'k 7y k <Ajk> are the mathematical expec-
tations of the tensors (here and subsequently the aver~
agmg operatmn will be denoted by angle brackets), and
A k and g k are the fluctuatlng components. In [2] it
Was assumed that 7\]k ~ E?\Jk, where &€ is a small
number. In the present paper no assumption is made
regarding the smallness of the fluctuating components.
Let us formulate the boundary conditions corre-
sponding to Eq. (1.1). Since the body is assumed to be
unlimited and the field Ajk(r) homogeneous, it is
natural to adopt the stochastic boundary conditions,
which require that the mathematical expectations of
the temperature should be equal to the given values
at all points. In the case of a constant temperature
gradient throughout the volume, we obtain the condi-
tion
<96/0;> = p; (1.4)

where pj is the given vector. Our problem reduces to
find a field 8(r) satisfying Eq. (1.1) and conditions
(1.4) and to calculate the equivalent thermal-conduc-
tivity tensor for a homogeneous body (the macroscopic
thermal-conductivity tensor). This tensor is naturally
introduced by the condition of equality between the
mathematical expectation of the heat flow in a micro-
inhomogeneous body and the heat flow in the equivalent
homogeneous body.

(A 08/0z> = hy™py. (1.5)

Equation (1.1) and condition (1.4) are equivalent to
the integrodifferential equation

9(r)~—SG(r ) 3 [x],, (rl)agf*']dn:pjxj, (1.6)

where dr, = dz;dx, dz,, and G(r, r;) is the Green's
function of the stationary heat conduction equation in
a homogeneous medium with the tensor Ajfk

A 0%G (x, ¥1)/02;02) = — B (x — r1). (1.7)

If ALj(r) is a homogeneous ergodic field, 8(r) forms
a stray field with uniform ergodic increments. For
convenience we transfer from Eq. (1.7) to the equiv~
alent integrodifferential equation for the gradient
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89/3XJ‘. Differentiating (1.7) term by term, using the
fact that G(r,r;) = G{p), where p =r; — r, and inte-
grating by parts, we obtain

a9 3G (p) " 40 (r+0) .
ax] S aE BE_.A {:;"I. ( "l_P) 351 ] F pJ' (1'8)
Here gj =Xj; = X dp =d&déydfs. Equation (1.8)
is solved by iteration
o = 226 (p1)
oz; — Pt P 2 S"'S"Ej.aﬁsl
N=1
602G (o) .
di ag 7",3“12 (I‘ + Pl)

cohap (T pb L ey den. . dey. (1.9)

For the mathematical expectations of the heat flows
we obtain

BN o o (- (26
<7"J‘k'a—x;{“/—x:kpk,+PINZS‘--Sm---
=1
082G (ayy)

o m (M (0 hgy (1) - - -

v KgNzﬂ(pl—i— "'+pN)>dP1"’dPN'

From this by determining (1.5) we find the tensor
of the macroscopic thermal-conductivity coefficients

R I o
926 (o)

ag aE <}"]0!1” (0) A"‘Jxaz (Pl)

Mo (o1 o o) dpr. . dpy (1.10)
Keeping only one term of the series (N =1) in
Eg. (1.10) corresponds to the Born approximation
[1,2]. The problem is to calculate the general term
of the series (1.10) for the most general properties of
the tensors A:j and Afl,, and to carry out the actual
summation. Equation (1.10) can also be expressed in
the form
™ = Ay V. (1.11)
The tensor 7\3‘12‘ is the solution of the integral equa-
tion

R (1) = b’ (1) { Gragh D™ (£ -+ 9) +

+ A (r + g)1 dp - (1.12)

The application of the iteration method of Eq. (1.12)
again leads to (1.10).

2. Let the field of the coefficients Ajk(r) be mark-
edly isotropic in the sense*!:khatthe correlationfunctions
of the tensors Ajk(r) and A4 k(r) from an isotropic
tensor field. This 11m1tat10n is more rigid than the
isotropy requirement for the correlation functions of
Ajk(r). A polycrystalline aggregate whose constants
satisfy the condition of marked isotropy will be de-
scribed as markedly isotropic. For such a polycrystal

line aggregate 7\j‘k =Adjk, where Ay is the mathemat-
ical expectation of the thermal-conductivity coefficient,

G (p) = (Amhop)~", p = (E)", (2.1)
In this case the correlation tensors
" (F) gy T (1) Rgpr” (T 4 80D = Qs
<M‘u.” (I‘) s }“ﬁN_fl'aN (l‘) }"ENR** (1' +- P)> = Il'PJ'“x...ﬁNh’ (2-2)

depend only on the distance p = (!;jz )1/2 between the
points.

The mathematical expectation of the tensor Aﬁ?
is calculated with Eq. (1.12)

02G (2
> = § G [Pres 0) + ik (9)] .
Noting that
G (a) 1 3E,Ep 60:3)
T, — 3, s 0) m;( &

and integrating with respect to the spherical coordi-
nates p, ¢, 6, we find
iy = — 51 [Dimas (0) + Pisea: O)] +
o 2R 7

i) )
[

0

[(ijz% (P

Sy

3amaﬁ

Sw .
+ Yiea (p)]( ‘q,)smedpdq)de.
Integrating over the sphere p = const, the integral
vanishes. Thus

(7\',:'1.:**> = 1/3)‘10—1 [cPJ'aak (O) + 'lp.’iuak (O)] .

Repeating the procedure and taking into account
Eq. (1.10), we finally obtain

[oe}
A = hody + > La®,
N=1

1 N L4 ” "

Ii®™ = (= 5] D+ D>, (2.3)
We now express (2.3) in terms of u; ik Let u; k be
the fluctuating part of this tensor. Usmg relatlonshlps
of the (1.2) type, the single-point correlation tensor

in (2.3) becomes
LANgp—

" o
ja Mo« -« hpp” > =

n ”
= CjxLosys - -« CBNY?N+1C’A\'2N+2> Provs - - - Brgnpvamye:

By contracting the tensor, as indicated in Eq. (2.3),
and bearing in mind that

CoaxiLavs = Oypvar {Cv.Lyvay = s Ovyre

we obtain

1 e
-5 0 D (") (2.4)

a=1

<xia.”?"1.a1” .. -;_La}lv.’;> =

Here u'& are the principal values of the tensor ”oyp
(here and subsequently the rule of summation with
respect to dummy indices is not extended to the index
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a). With (2.3) and (2.4) Eq. (1.10) takes the form Aj =
= Ax 0y, where

I

(2.5)

The right-hand side consists of a converging series.

It can easily be verified that the sum of the series
(2.5) is

n 3 LY Iy LA §
R C NI
3. Equation (2.6) gives an accurate value of the
macrogcopic thermal-conductivity coefficient for a
microinhomogeneous body with marked isotropy, and
we use it to evaluate the various approximate methods,
If the crystallites are slightly anisotropic, the poly-
crystalline aggregate will have little inhomogeneity.
This case has been discussed in [2]. To obtain a
formula corresponding to the assumptions in [2], we
replace ,u& by su&, where € is the smallness param~
eter, and we expand the right-hand side of Eq. (2.6)
in a series in powers of €. Retaining terms &°, we
find

3
e g2 e
g Q0 (31
a==1

Let the crystallite have one axis of symmetry, for
example. We denote the principal values of the tensor
Mk by uy = pg = By, 3=y Then

ho=12fp; + ey, W =p’=—"s{ —pL)
ps" =5 (py —My)- (3.2)

The exact formula (2.6) takes the form

A g 4P 22 . ettt
P T P R R (p*ﬁuw% . (3.3)

For the case (3.2) Eq. (3.1) has the form (assum-
ing € = 1)

Ao/ hg =1 —2/g p2. (3.4)
For small values of p (i.e. for #} = u,) Eqs. (3.3) and (3.4) give
similar results, For p — 1 (i.e. for uJ_/y” - 0), Eq. (38.3) gives A+ ~
-~ 2hy/5. Expressions (3.4), formally extended to the case of large in-
homogeneities, gives h« = Xy/3. In the opposite case (i I /L = 0),

f A/ Fu
i

Zall
f yl/}l‘l

r 1
Fig. 1

we have p = —1/2. Then according to Eq. (3.3)Ax — 11X(/14 and
according to Eq. (3.4)As = 5xp/6. The graph of the dependence of

M/u“ on ;u_L/uR is given in Fig, 1, while Fig. 2 shows the dependence
of Ax/u, on ] /i, . Curve 1 corresponds to the exact formula (8,3) and
curve 4 to formula (3.4). For the sake of completeness we have plotted
on the graph curves 2 and 3 corresponding to the approximate values of
A obtained by simple averaging of the coefficients of thermal con-
ductivity (curve 2) and thermal resistance (curve 3). As can be seen
from the graph, the first (Born) approximation gives satisfactory results
in the case of large inhomogeneities too. Let, for example, u) =

= /2. Then p = 1/4 and the difference between Egs. (3.3) and (3.4)
is 0.3%.

' R ,

=
[

§
4 1 P
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g 1
Fig. 2

We will estimate the error of the self-consistent
field method for this problem. Following this method,
we consider the problem of the stationary heat conduc-
tion in an isotropic expanse containing an anisotropic
inclusion in the form of a spherical crystallite of
radius R. On the assumption that the tensor of the
thermal-conductivity coefficients of the isotropic
medium coincides with the tensor of the macroscopic
thermal-conductivity coefficients ﬁk =By, we
obtain it from the condition that the temperature gra-
dient averaged over the volume of the crystallite and
the set of realizations coincides with the mathemat-
ical expectation of the temperature gradient in the
polycrystalline aggregate. Let

A= My -k bR,
M= 0oy B = Mol + py™*

Then to determine the temperature gradient we
obtain an integral equation of {ype (1.8)

98 (r) > 52G (o — 1) ” a6 .
ok — \ TR Mt 0 g de=p (35)

Bearing in mind that for the model adopted
Ap**=0 for|r|>R
Mip®* (1) = Ciatpablas™™ == const  for |r|<CR

we transform Eq. (3.5) into

8 (1) .
35;]. — Craliabhag™™ S

lei<R

092G (p —r) 80 (g

) de
W aal dP"‘PJ' (3.6)

Let us average the temperature gradient over the
volume of the crystallite. For this purpose we inte~
grate Eq. (3.6) with respect to the volume |r|/ =R

1
P CraCighlas™™ 5+ S dr x
jricr
932G (o — r) 99 (p) .
% S 5e;08,  og oF = Pi

lPiSR
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By altering the order of integration and differen-
tiation, we transform it into

1 C d0(0) a2
0 g~ et LN,
Pi Craliplhag v S %, aa] 0%y,

Ipi<B

x[ S G(p—r)dr}dp=p,-.
IrI<R

Considering that

G (p—r)dr — 21_(32_ _1,92)
Iri<R *

and differentiating, we find for the temperature gra-
dient p? averaged over the volume of the crystallite

(2M*8;y, - CiaCpapag) Pi° = Shyp; (3.7)

The determinant of Eq. (3.7) is independent of the
direction cosines and equals

D = 87“*3 +4}”* (g +Hg 4y +
4 2R, 7 (g Py A Uolts + Halls) -+ Piftally,

From Eq. (3.7) and the condition {pJ) =p; we obtain
an equation for the effective thermal-conductivity
coefficient

G2 — Yy 16 (s 4 paty 4 pabts) —

2

= (e P g — papapg=0. (3.8)

For ppaps = 0, this equation has only one real
positive root. This follows from the fact that the sum
of the three roots is zero, while their product is posi-
tive. The results of the calculations for the case p; =
=Hy =4, M3 = K| are given in Figs. 1 and 2, curve 5.
These graphs show that the self-consistent field
method gives good results even with very substantial
anisotropy of the crystallites.

4, The calculations can be continued to the end in certain other
cases. Let us consider, for example, the field Aji(r) having the fol-
lowing properties; in the x;, x, plane it is markedly isotropic in the
sense of the definition given in section 2, while the x3~axis is the
principal axis of the tensor Ajk at each point, the component Xy
being determined. Certain disordered reinforced glass-like plastics
obtained by pressing belong to this type. We will restrict ourselves to
the determination of the macroscopic thermal-conductivity coeffi-
cientsin the x;, x, plane, In this case we arrive at the plane problem

for Eq, (1.1) with conditions (1.4) and the Green’s functions

G(p)=(2mh) M lnp, p=(EQ" (=1, 2). (4.1)

Equations (1.11) and (2.2) remain in force. Polar coordinates are
used to calculate the tensors Ijk)' The calculations lead to a formula
similar to (2.3)

LN, .
(N _ | k
1]‘,,.)_( %) AR Y

By using a formula of type (1.2) and bearing in mind that for the
plane problem

$Clayrs Cayra? =2 av,v,

(not summing with respect to o) we obtain

2
— ” 1
<A’jalxa‘u, e '}"aNL> =9 6jk 2 (P‘a”)Nﬂ .

a==1

Whence, after returning to (1.11), we find that x}‘k = Nsbjk, where

[++] 2
Fat = D (o) S @2

N=2 a=l

The sum in Eq. (4.2) is easily calculated and, since p] = ~p; is
Ml hg =1 — (" [ 2h)* [1 + (" / 2h)2172. 4.3

It is not difficult to calculate the corresponding first (Born) approxi-
mation

A/ g =1 — (" [ 2hp)2. 4.4

Let us denote the principal values of the tensor pjk by By =y,
e = B A graph of the exact dependence of the ratio M/u"1 on the
ratio u_L/u is given in Fig, 3, line 1, Curve 2 corresponds to the
averaged thermal conductivity coefficient, curve 3 to the averaged
thermal-resistance coefficient, and curve 4 is constructed from the
Born approximation Eq. (4.4). In this case the self-consistent field
method gives

Ay = (P«lP-z)‘/3

from which curve 5 is constructed, As can be seen from the graph,
in this problem too the Born approximation and the self-consistent
field method have a wider field of application than is to be expected
from semiintuitive considerations.
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